POLYCYCLIC PHOSPHOROUS TRIAMIDES

Thomas J. Atkins

Contribution No. 2522, Central Research and Development Department E. I. du Pont de Nemours & Company, Inc., Wilmington, Delaware 19898

Macrocyclic ring structures have remarkable stabilizing effects on cage compounds derived from them. Recently, stable polycycles containing tetra-aminomethane and tetraaminofluorophosphorane moieties have been reported from these laboratories. 1,2 Our research has pursued the one-step synthesis of the polycycles by "inserting" the central atom into a macrocyclic polyamine via an exchange reaction. This method may be used to prepare tricyclic phosphorous triamides.

The cage phosphorous triamides 1-3 listed in the table were prepared via the exchange reaction of hexamethyl phosphorous triamide and the appropriate cyclic triamine. ^{3,4} By heating stoichiometric amounts of the reactants neat (120°C, 2 hr), or in an inert solvent such as toluene or benzene, dimethylamine was evolved and 1-3 were obtained in good yield. The spectroscopic data are in accord with assigned structures.

The smallest member of this class, the tricyclic phosphorous triamide prepared from 1,4,7-triazacyclononane, could not be isolated. Models indicate the nine-membered ring is too small to accommodate the relatively long phosphorous-to-nitrogen bonds without considerable strain. The linear analog,

N,N''-dimethyldiethylenetriamine, formed a distillable but unstable product which became a clear glass on standing at room temperature.

Phosphorous Triamide ⁵	bp (press.)	% Yield	δ P-nmr 6	δ^{13} C-nmr(J _{P-C}) 6
	84-86° (O.3mm)	92	+111.6	58.1(9) 51.1(6) 45.5(8) 15.3(16)
2	73-75° (0.3mm)	75	+122.7	50.2(10) 49.1(10) 46.4(7) 23.9(8)
N P N 3	104-108° (0.6mm	n) 76	+109.2	49.1(8) 24.3(4)

REFERENCES AND FOOTNOTES

- 1. J. E. Richman and H. E. Simmons, <u>Tetrahedron</u>, 30, 1769 (1974).
- 2. J. E. Richman, <u>Tetrahedron Lett.</u>, 559 (1977).
- J. E. Richman and T. J. Atkins, <u>J. Amer. Chem. Soc.</u>, <u>96</u>, 2268 (1974);
 H. Koyama and T. Yoshino, <u>Bull. Chem. Soc. Japan</u>, <u>45</u>, 481 (1972).
- 4. U.S. 3,996,276.
- 5. 1: m/e 171.0944; 2: m/e 185.1117; 3: m/e 199.1264.
- 6. Nmr spectra were obtained in C_6D_6 . Chemical shifts are reported in ppm from external 85% H_3PO_4 in benzene (^{31}P) or internal TMS (^{13}C). Downfield shifts are reported as positive values.

(Received in USA 25 August 1978)